Thermotolerant and mesophylic fungi from sugarcane bagasse and their prospection for biomass-degrading enzyme production
نویسندگان
چکیده
Nineteen fungi and seven yeast strains were isolated from sugarcane bagasse piles from an alcohol plant located at Brazilian Cerrado and identified up to species level on the basis of the gene sequencing of 5.8S-ITS and 26S ribosomal DNA regions. Four species were identified: Kluyveromyces marxianus, Aspergillus niger, Aspergillus sydowii and Aspergillus fumigatus, and the isolates were screened for the production of key enzymes in the saccharification of lignocellulosic material. Among them, three strains were selected as good producers of hemicellulolitic enzymes: A. niger (SBCM3), A. sydowii (SBCM7) and A. fumigatus (SBC4). The best β-xylosidase producer was A. niger SBCM3 strain. This crude enzyme presented optimal activity at pH 3.5 and 55 °C (141 U/g). For β-glucosidase and xylanase the best producer was A. fumigatus SBC4 strain, whose enzymes presented maximum activity at 60 °C and pH 3.5 (54 U/g) and 4.0 (573 U/g), respectively. All these crude enzymes presented stability around pH 3.0-8.0 and up to 60 °C, which can be very useful in industrial processes that work at high temperatures and low pHs. These enzymes also exhibited moderate tolerance to ethanol and the sugars glucose and xylose. These similar characteristics among these fungal crude enzymes suggest that they can be used synergistically in cocktails in future studies of biomass conversion with potential application in several biotechnological sectors.
منابع مشابه
Prospects of Cellulosic Ethanol from Sugarcane Bagasse
AGRICULTURAL residues such as grain straws and corn stover are abundant, readily available biomass feedstocks for the production of next generation biofuels, with collection and transport costs being a major component of their cost. Sugarcane bagasse is thus an especially attractive biomass feedstock in that it is an agricultural residue already present in large quantities at sugar and ethanol ...
متن کاملA comparison on Lipase Production from Soybean meal and Sugarcane Bagasse in Solid State Fermentation using Rhizopus oryzae
In this study, solid-state fermentation of two types of agricultural residues/products for lipase production in a tray-bioreactor was investigated. Rhizopus oryzae was used as a potential fungus strain and two types of agricultural residues including soybean meal and sugarcane bagasse were utilized as substrate. Fermentation was carried out in two different operational conditions: one with cont...
متن کاملComparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities
BACKGROUND As one of the most abundant agricultural wastes, sugarcane bagasse is largely under-exploited, but it possesses a great potential for the biofuel, fermentation, and cellulosic biorefinery industries. It also provides a unique ecological niche, as the microbes in this lignocellulose-rich environment thrive in relatively high temperatures (50°C) with varying microenvironments of aerobi...
متن کاملThe capability of endophytic fungi for production of hemicellulases and related enzymes
BACKGROUND There is an imperative necessity for alternative sources of energy able to reduce the world dependence of fossil oil. One of the most successful options is ethanol obtained mainly from sugarcane and corn fermentation. The foremost residue from sugarcane industry is the bagasse, a rich lignocellulosic raw material uses for the production of ethanol second generation (2G). New cellulol...
متن کامل2G ethanol from the whole sugarcane lignocellulosic biomass
BACKGROUND In the sugarcane industry, large amounts of lignocellulosic residues are generated, which includes bagasse, straw, and tops. The use of the whole sugarcane lignocellulosic biomass for the production of second-generation (2G) ethanol can be a potential alternative to contribute to the economic viability of this process. Here, we conducted a systematic comparative study of the use of t...
متن کامل